Correlated seed failure as an environmental veto to synchronize reproduction of masting plants.
نویسندگان
چکیده
Variable, synchronized seed production, called masting, is a widespread reproductive strategy in plants. Resource dynamics, pollination success, and, as described here, environmental veto are possible proximate mechanisms driving masting. We explored the environmental veto hypothesis, which assumes that reproductive synchrony is driven by external factors preventing reproduction in some years, by extending the resource budget model of masting with correlated reproductive failure. We ran this model across its parameter space to explore how key parameters interact to drive seeding dynamics. Next, we parameterized the model based on 16 yr of seed production data for populations of red (Quercus rubra) and white (Quercus alba) oaks. We used these empirical models to simulate seeding dynamics, and compared simulated time series with patterns observed in the field. Simulations showed that resource dynamics and reproduction failure can produce masting even in the absence of pollen coupling. In concordance with this, in both oaks, among-year variation in resource gain and correlated reproductive failure were necessary and sufficient to reproduce masting, whereas pollen coupling, although present, was not necessary. Reproductive failure caused by environmental veto may drive large-scale synchronization without density-dependent pollen limitation. Reproduction-inhibiting weather events are prevalent in ecosystems, making described mechanisms likely to operate in many systems.
منابع مشابه
Individual resource limitation combined with populationwide pollen availability drives masting in the valley oak (Quercus lobata)
1. Masting, the synchronized production of variable seed crops, is widespread among woody plants, but there is no consensus about the underlying proximate mechanisms. To understand this population-level behaviour, it is necessary to dissect the behaviour of individual trees as well as the interactions that synchronize them. 2. Here, we test a model of masting in which variability in seed set is...
متن کاملModeling the impact of reproductive mode on masting
Masting is defined as the intermittent highly variable production of seed in a plant population. According to reproductive modes, that is, sexual and asexual reproduction, masting species can be separated into three groups, that is, (1) species, for example, bamboo, flower only once before they die; (2) species, for example, Fagus, reproduce sexually; and (3) species, for example, Stipa tenacis...
متن کاملCues versus proximate drivers: testing the mechanism behind masting behavior
Masting, the intermittent and synchronized production of seeds, is a common and important phenomenon throughout the plant kingdom. Surprisingly, the proximate mechanisms by which populations of masting plants synchronize their seed sets have been relatively unexplored. We examined how temperature influences the acorn crop of the valley oak Quercus lobata, a masting species common in California,...
متن کاملPatterns of Annual Seed Production by Northern Hemisphere Trees: A Global Perspective.
We tested whether annual seed production (masting or mast fruiting) in Northern Hemisphere trees is an evolved strategy or a consequence of resource tracking by comparing masting patterns with those of annual rainfall and mean summer temperatures, two environmental variables likely to correlate with available resources. There were generally significant negative autocorrelations between the seed...
متن کاملAnticipatory reproduction and population growth in seed predators.
Mast seeding, the intermittent, synchronous production of large seed crops by a population of plants, is a well-known example of resource pulses that create lagged responses in successive trophic levels of ecological communities. These lags arise because seed predators are thought capable of increasing reproduction and population size only after the resource pulse is available for consumption. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The New phytologist
دوره شماره
صفحات -
تاریخ انتشار 2018